

KITZ PN Rating Valves Valves

KITZ CORPORATION

CONTENTS

Valv	ve type	Fig. No.	Page
		PN16FH	03
	Gate Valves	PN16S	03
		PN25S	03
	Globe Valves	PN16A	04
Bronze & Brass	Globe valves	PN25A	04
DIOIIZE & DIASS	Y-Pattern Strainer	PN16YE	04
		PN25YE	05
	Ball Valves	PN40SZA	05
	Check Valves	PN16R	05
		PN25R	06
		EN16FCW(I)	08
	Gate Valves	EN16FCL(M)	08
		(PHOX)EN25FCLE	09
	Globe Valves	EN16FCJ(M)	09
Cast Iron		EN16FCO(M)	10
Cast II OII	Check Valves	(PHOX)EN25FCOE	10
	CHECK VAIVES	PN16FWNBM	11
		PN16FWNBME	11
	Y-Pattern Strainer	EN16FCY(M)	11
		(PHOX)EN25FDYBE	12
		PN16DJ	14
		PN25DJ	14
		G-PN16DJ	15
Ductile Iron		G-PN25DJ	15
Ductile Iron		PN16DJL	16
	Butterfly Valves	PN25DJL	16
		G-PN16DJL	17
		G-PN25DJL	17
		PN16XJME	19
Aluminum		G-PN16XJME	19
		G-PN16SFKBV13VE	20

Pressure-Temperature ratings (P-T ratings)

Maximum permissible working pressure (bar)

Service temperature		Cast iron valves				
(°C)	PN16	PN20	PN25	PN16		
-10 to 66	10.0	00.0	05.0			
100	16.0	20.0	25.0	16.0		
120	13.5	17.2	21.8			
150	9.5	13.0	16.5	14.4		
170	7.0	10.3	12.8	13.7		
180	-	9.0	11.3	13.4		
186	-	-	10.5	13.2		
198	-	-	-	12.9		
200	-	_	_	12.8		

(Note) : Intermediate values may be obtained by linear interpolation. *See page 18 for P-T ratings of Butterfly Valves.

Don't use our products in flammable or toxic gas services.

*Specifications are subject to change without notice.

*For detail information, please check with our individual catalogs, or contact Kitz Corp.

KITZ "K-Metal": Unique Dezincification Resistant Material (UNS No.C35350)

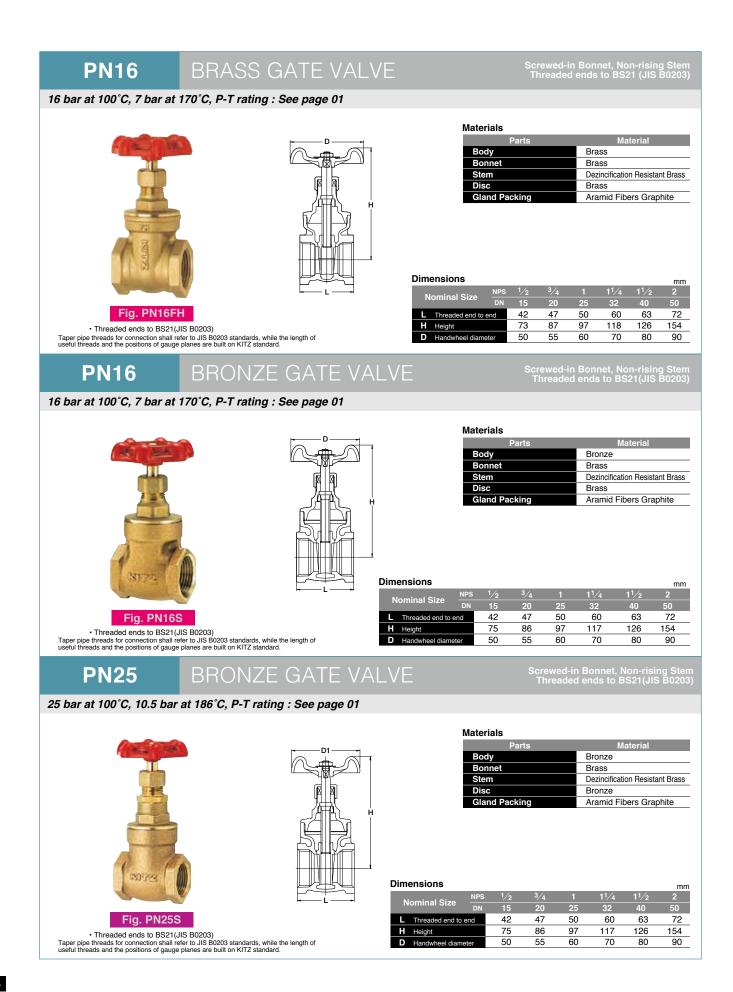
Water pollution and employment of new piping material have amplified valve dezincification problems.

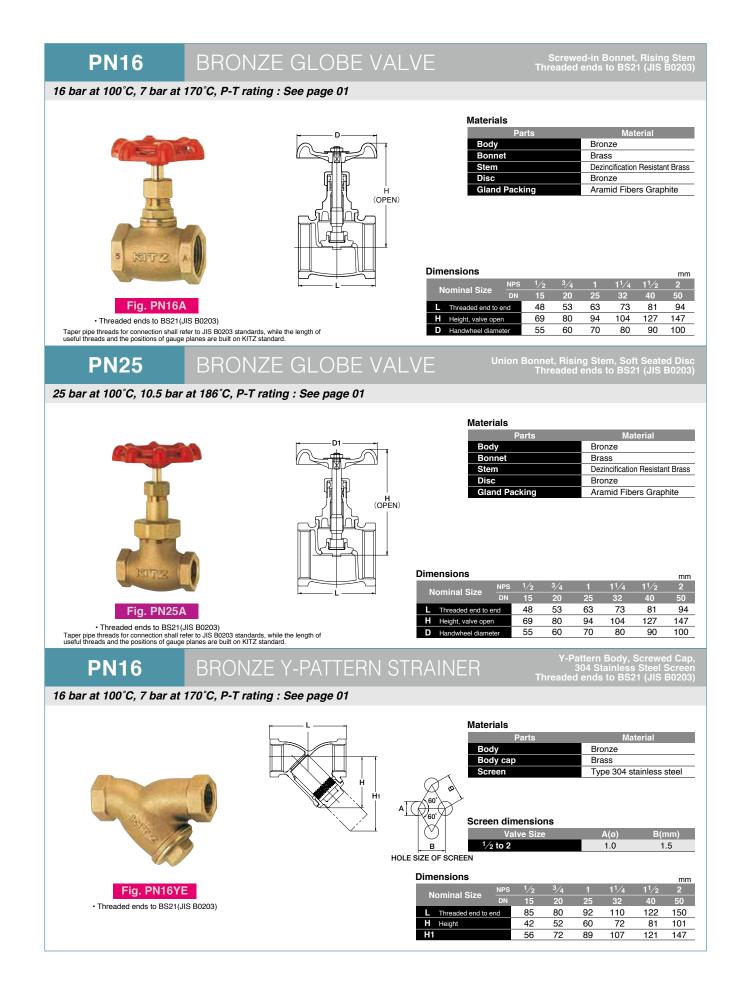
What is dezincification?	The copper alloy used in bronze valves contains zinc, tin, and lead with copper as a base. When bronze valves are subjected to unfavorable service conditions, the zinc component contained in the copper alloy separates from the copper base, and the metal corrodes. This is called dezincification. In case of bronze valve, the body, bonnet, and other cast bronze parts hardly corrode due to the small perentage of zinc contained in the alloy. But brass valve parts such as stems, which contain 40% zinc, often corrodes due to extreme dezincification.
What causes dezincification?	 The following factors cause dezincification. These factors are generally believed to occur together, rather than independently. 1 Excessive aqueous solution in acidity. 2 Warm water containing excessive free carbonic acid with high electric conductivity. 3 High electric conductivity with excessive presence of chlorides and sulfides. 4 Copper pipes or vinyl chloride pipes. 5 Excessive dissolved oxygen.
What is K-Metal?	To prevent dezincification, KITZ Corporation developed K-Metal as the stem material of bronze/brass valves. The test data given below compare the properties of K-Metal with ASTM B124, B16 and B62, and also with another dezincification resistant material introduced by one of our competitors in Japan. The comparisons prove K-Metal's overall high performance and explain why KITZ

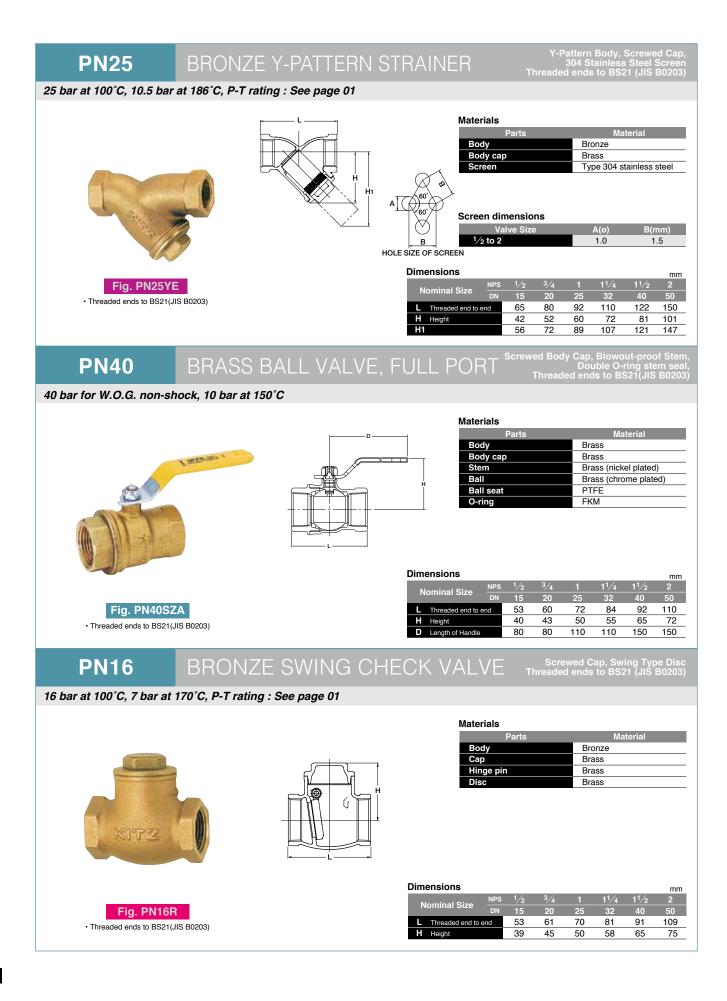
The comparisons prove K-Metal's overall high performance and explain why KITZ bronze/brass valves offer longer service life. The extent of the corrosion and dezincification compared here are the values recorded after two weeks of laboratory experiments. Australian Standard C316 was applied to the measurement of dezincification depth.

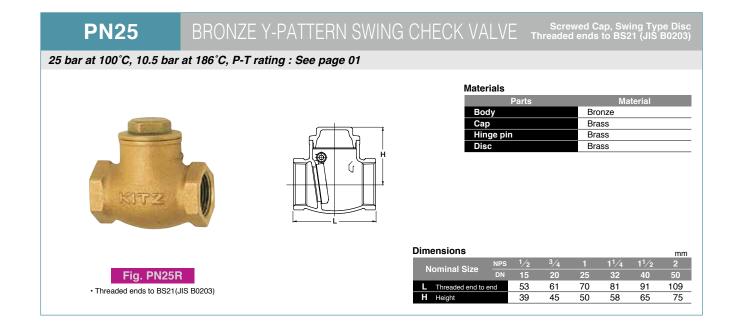
Color Coding (Bronze & Brass Valves)

Color coding is made on a spoke of the handwheel of Bronze & Brass gate or globe valves and on the cover of check valves and strainers.




Cast Iron Valves, Trim Materials


KITZ cast iron valves are provided with either one of the two trim materials listed in the table below for versatility of service applications. Color coding is made on the spoke of the handwheel "Plate A" and on the body "Plate B" of gate or globe valves and on the cover of swing check valves and strainer.


Trim Material	Color cording						
	Plate A	Plate B	Suffix of Fig.				
Bronze seats / Brass stem	Blue	Black	-				
Stainless seats / Stem	Red	Red	М				

KITZ Bronze and Brass Materials to JIS Standards

JIS H5120 (Copper & Copper Alloy Castings)

	Designation		Chemical composition (%)									Mechanical property		
Cast bronze Class 6	Designation	Cu	Sn	Zn	Pb	Ni	Fe	Р	Sb	AI	Si	Tensile strength	Elongation	
	CAC406 (BC6)	83.0-87.0	4.0-6.0	4.0-6.0	4.0-6.0	1.0 Max.	0.3 Max.	0.05 Max.	0.2 Max.	0.01 Max.	0.01 Max.	195 Min. (N/mm²)	(%) 15 Min.	

JIS H3250 (Copper & Copper Alloy Rods and Bars)

	Desigr	nation		Chemical con	Mechanical property			
Forged brass Alloy No.3771	Extruded	Drawn	Cu	Pb	Fe + Sn Zn		Tensile strength	Elongation
	C3771BE	C3771BD	57.0-61.0	57.0-61.0 1.0-2.5 1.0 Max.		Remainder	315 Min. (N/mm ²)	(%) 15 Min.

JIS H3250 (Copper & Copper Alloy Rods and Bars)

_	5	nation		Chem	Mechanical property				
Free-cutting brass Alloy No.3604	Extruded	Drawn	Cu	Pb	Fe	Fe + Sn	Zn	Tensile strength	Elongation
	C3604BE	C3604BD	57.0-61.0	1.8-3.7	0.5 Max.	1.0 Max.	Remainder	335 Min. (N/mm ²)	(%)

KITZ Bronze and Brass Materials to ASTM Standards

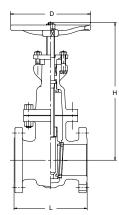
ASTM B62

	Chemical composition (%)										Mech	anical prop	perties
Copper	Tin	Lead	Zinc	Nickel & Cobalt	Iron	Sulfer	Phosphorus	Antimony	Aluminum	Silicon		Minimum	
84.0-86.0	4.0-6.0	4.0-6.0	4.0-6.0	1.0 Max.	0.30 Max.	0.08 Max.	0.05 Max.	0.25 Max.	0.005 Max.	0.005 Max.	Tensile strength 30 ksi	Yield strength 14 ksi	Elongation in 2 in. 20%

ASTM B584 C84400

	Chemical composition (%)										Mech	anical prop	perties
Copper	Tin	Lead	Zinc	Nickel & Cobalt	Iron	Sulfer	Phosphorus	Antimony	Aluminum	Silicon		Minimum	
78.0-82.0	2.3-3.5	6.0-8.0	7.0-10.0	1.0 Max.	0.40 Max.	0.08 Max.	0.02 Max.	0.25 Max.	0.005 Max.	0.005 Max.	Tensile strength 29 ksi	Yield strength 13 ksi	Elongation in 2 in. 18%

ASTM B283 C37700


	Chemical con	nposition (%)	Mechanical properties			
Copper	Lead	Iron	Zinc	Minimum		
58.0-61.0	1.5-2.5	0.30 Max.	Remainder	Tensile strength 50 ksi	Yield strength 18 ksi	Elongation in 4x thickness 25%

PN16 IRON GATE VALVE

Bolted bonnet, Inside screw, Non-rising stem, Flanged ends.

16 bar at 120°C, 12.8 bar at 200°C, P-T rating : See page 01

Parts	Material	Specifications			
Body	Cast Iron	EN-GJL-200			
Bonnet	Cast Iron	EN-GJL-200			
Stem	Forged Brass	JIS H3250 C3771BD or BE			
Disc	Cast Iron	EN-GJL-200			
Disc seat ring	Cast Bronze	JIS H5120 CAC406			
Body seat ring	Cast Bronze	JIS H5120 CAC406			
Gland	Ductile Iron				
Gland packing	Flexible Graphite + PTFE Braided				
Gasket	Gi	raphite			
Gland bolt/nut	Cart	oon Steel			
Bonnet bolt/nut	Cart	oon Steel			
Bonnet bushing	Cast Bronze	JIS H5120 CAC406			
Hand wheel DN 50 to 200	Cast Iron				
DN 250 & 300	Duo	ctile Iron			

Design Specifications

Materials

nems	
Shell wall thickness	KITZ Standard
Face-to-face or End-to-end dimensions	EN 1171 PN16 Basic Series 3
End Connection	EN 1092-2 PN16

Fig. EN16FCWI

• Bronze trim, with position indicator

Dimensions										
Valve Size	NPS	2	2 ¹ /2	3	4	5	6	8	10	12
valve Size	DN	50	65	80	100	125	150	200	250	300
L Face-to-face		178	190	203	229	254	267	292	330	356
H Height		271	297	352	394	451	518	618	760	867
D Handwheel Diar	neter	180	180	200	250	280	300	350	400	450

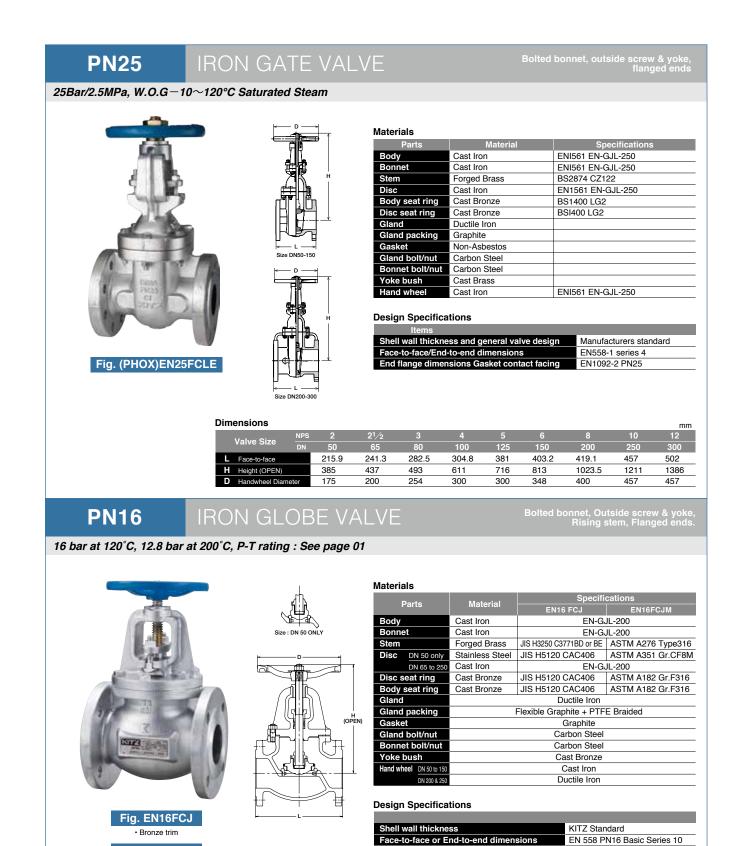
PN16

IRON GATE VALVE

Bolted bonnet, Outside screw & yoke, Rising stem, Flanged ends.

16 bar at 120°C, 12.8 bar at 200°C, P-T rating : See page 01

Materials pecification Parts Material EN16 FCL EN16FCLM Body Cast Iron EN-GJL-200 Bonnet Cast Iron EN-GJL-200 Stem JIS H3250 C3771BD or BE ASTM A276 Type316 Forged Brass Disc Cast Iron EN-GJL-200 Disc seat ring Cast Bronze JIS H5120 CAC406 ASTM A182 Gr.F316 Body seat ring Cast Bronze JIS H5120 CAC406 ASTM A182 Gr.F316 Gland Ductile Iron Flexible Graphite + PTFE Braided Gland packing Gasket Graphite Gland bolt/nut Carbon Steel Bonnet bolt/nut Carbon Steel Yoke sleeve Cast Bronze Cast Iron Hand wheel DN 50 to 200 DN 250 & 300 Ductile Iron

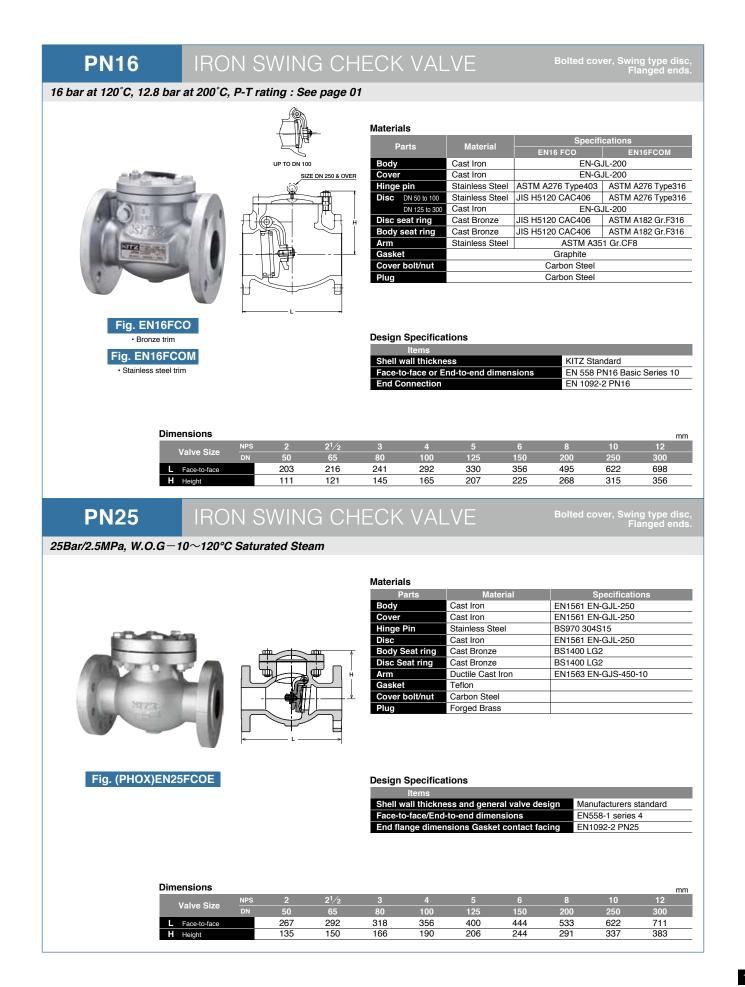

Design Specifications

Items	
Shell wall thickness	KITZ Standard
Face-to-face or End-to-end dimensions	EN 1171 PN16 Basic Series 3
End Connection	EN 1092-2 PN16

Stainless steel trim
Dimensions

Bronze trim
 Fig. EN16FCLM

Valve Size	NPS	2	2 ¹ /2		4			8	10	12
valve Size	DN	50	65	80	100	125	150	200	250	300
L Face-to-face		178	190	203	229	254	267	292	330	356
H Height (OPEN)		343	389	462	547	648	759	956	1168	1363
D Handwheel Dian	neter	170	170	200	250	280	300	350	400	450

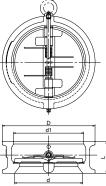

Fig. EN16FCJM

Stainless steel trim

Dim	imensions mm_												
	Valve Size	NPS	2	2 ¹ /2	3	4	5	6	8	10			
valve Size	valve Size	DN	50	65	80	100	125	150	200	250			
L	Face-to-face		203	216	241	292	330	356	495	622			
Н	Height (OPEN)		277	307	353	404	467	533	620	665	_		
D	Handwheel Diam	eter	180	180	225	280	300	350	450	450	_		

EN 1092-2 PN16

End Connection


RON WAFER CHECK VALVE

Dual plate, No by-pass valve mounted, Wafer type body to PN16

16 bar at 80°C Non-shock water (NBR seat) 16 bar at 100°C Non-shock water (EPDM seat)

SIZE DN 150 & OVER Materials

Deute	Meterial	ASTM Spec.				
Parts	Material	PN16FWNBM	PN16FWNBME			
Body	Cast iron	A126	CL.B			
Seat*	Rubber	NBR	EPDM			
Disc**	Stainless steel	A351 G	r.CF8M			
Pin	Stainless steel	A276 Type 304				
Plug	Stainless steel	A276 Type 304				
Spring	Stainless steel	A313 Type 316				

*Vulcanized to the body. **Bronze disc & 304SS disc available upon request.

Design Specifications

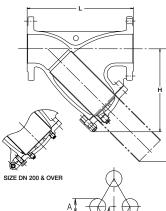
items	
Shell Wall thickness	KITZ Standard
Face-to-face or End-to-end dimensions	KITZ Standard
End Connection	Wafer type(EN1092 PN16)

Dimensions

Dimensions										mm
Valve Size	NPS	2	2 ¹ /2	3	4		6	8	10	12
valve Size	DN	50	65	80	100	125	150	200	250	300
L		54	54	57	64	70	76	95	108	143
D		109	129	144	164	194	220	275	331	386
d 1		60	73	89	114	141	168	219	273	324
d		55	68	82	112	134	163	207	263	305

PN16

RON Y-PATTERN STRAINER


Bolted cover, Y-Pattern body, Punched stainless steel plate screen, Flanged ends.

16 bar at 120°C, 12.8 bar at 200°C, P-T rating : See page 01

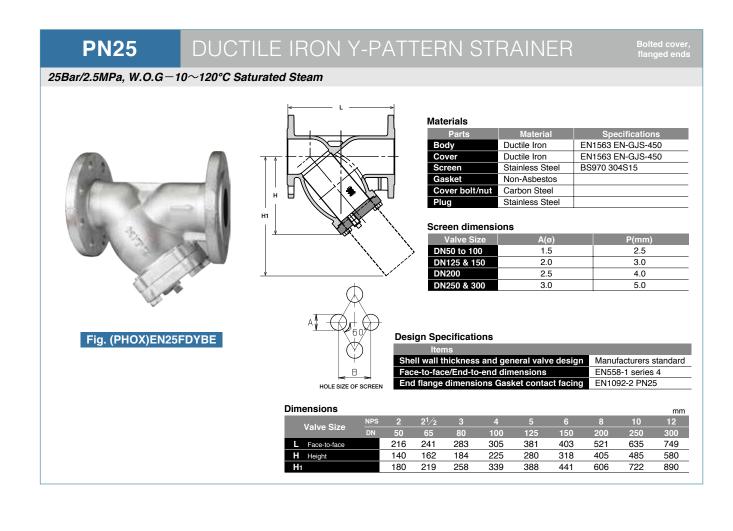
Fig. EN16FCY • Screen : 304 Fig. EN16FCYM

• Screen : 316

Parts	Material	Specifications					
Parts	Material	EN16 FCY	EN16FCYM				
Body	Cast Iron	EN-G	JL 200				
Cover	Cast Iron	JL 200					
Screen	Stainless Steel	ASTM A276 Type304	ASTM A276 Type316				
Gasket		Graphite					
Cover bolt/nut		Carbon Steel					
Plug	Stainless Steel ASTM A276 Type304						

Screen dimensions

Valve Size	A(ø)	P(mm)
DN 50 only	1.4	2.4
DN 65 to 125	1.5	2.5
DN 150 & 200	3.0	5.0
DN 250 & 300	5.0	7.0


Design Specifications

Materials

Items	
Shell wall thickness	KITZ Standard
Face-to-face or End-to-end dimensions	KITZ Standard
End Connection	EN 1092-2 PN16

Dimensions

Valve Size	NPS	2	2 ¹ /2	3	4	5	6	8	10	12
valve Size	DN	50	65	80	100	125	150	200	250	300
L Face-to-face		250	285	315	370	420	490	570	680	800
H Height		168	212	242	284	325	370	440	515	600
H1		208	289	335	388	446	497	589	694	818

KITZ DJ Series Butterfly Valves

Thorough pursuit of functions required for butterfly valves Variety of product ranges to comply with customers' requirements

NBR (Buna-N) or

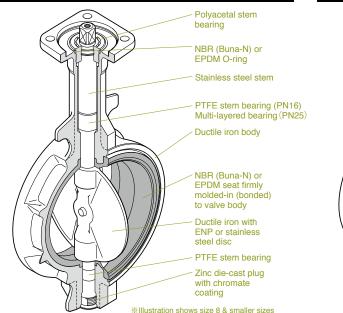
EPDM O-ring

Stainless steel

PTFE stem bearing

NBR (Buna-N) or EPDM seat booted to valve body Ductile iron body

Ductile iron with ENP


or stainless steel disc

PTFE stem bearing

stem

Design Features

Molded-in (bonded) seat structure (Size 2 to 12)

Non-peeling Seat-to-body Construction

Molded-in (bonded) seat structure is employed for size 2 to 12. Larger sized valves are provided with replaceable seat. This non-peeling seatto-body construction assures maintenance-free application for high fluid velocity service*1, vacuum service*2 and handling surging fluid velocity. It also guarantees peel-free valve mounting on pipelines.

- *1 Maximum 4 meters/second for on-off service for valves up to size 12, and 3 meters/second for size 14 and larger.
- *2 Up to 30 torr. Vacuum service is option for size 14 and larger.

Spherical design for Discs and Seats

Rubber seats are spherically designed where they contact top and bottom stems. This protects widely designed rubber seats from peeling or deformation for prolonged service life of valves. Thinly streamlined metal discs are the results of elaborate laboratory study to ultimately minimize the pressure loss.

Choice of Materials and Operating Devices

Choice among 4 disc and 2 seat materials and manual, pneumatic or electric valve operating devices makes service applications highly versatile.

Integral ISO 5211 Actuator Mounting Flange

Any pneumatic or electric valve actuators provided with ISO 5211 valve mounting flanges can be easily mounted for actuation of valves in the field.

Replaceable seat structure (Size 14 to 24)

6

Low Valve Operating Torque

Ø

Low operating torques are designed low for extension of valve service life and economic consideration in selection of valve operating devices.

Light-designed for Operation Efficiency

Designed much lighter than our conventional series for operation efficiency in piping

Emission-free Stem Sealing Mechanism

Prevention of external fluid leakage is maximized with a rubber O-ring assembled around the top stem and tight contact between spherically designed rubber seat and spherically designed top and bottom end of the disc.

Dew condensation prevention

Dew condensation prevention type is optionally available with heat insulating plate (size 2 to 6) or stainless steel stand (size 8 to 24).

Explanation of Product Code

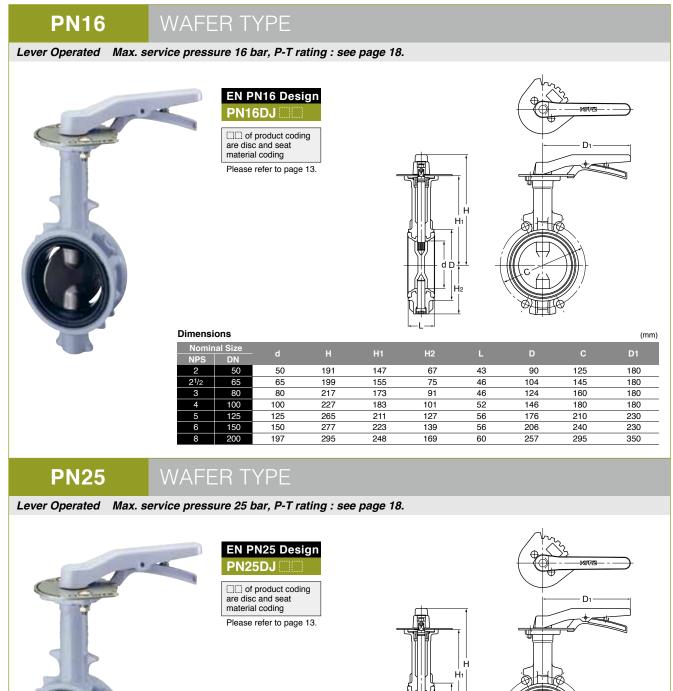
1 Valve operation

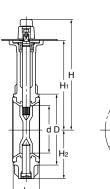
NoneLever handle GGear B(S).....Type B(S) pneumatic actuator FA(S)Type FA(S) pneumatic actuator EXS110/200...Type EXS KELMO® electric actuator EXD110/200...Type EXD KELMO® electric proportional control actuator

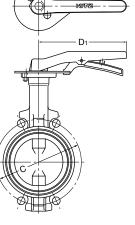
PN16 DJ (2) (3) (4)

2 Class PN16... EN1092 PN 16 PN25... EN1092 PN 25

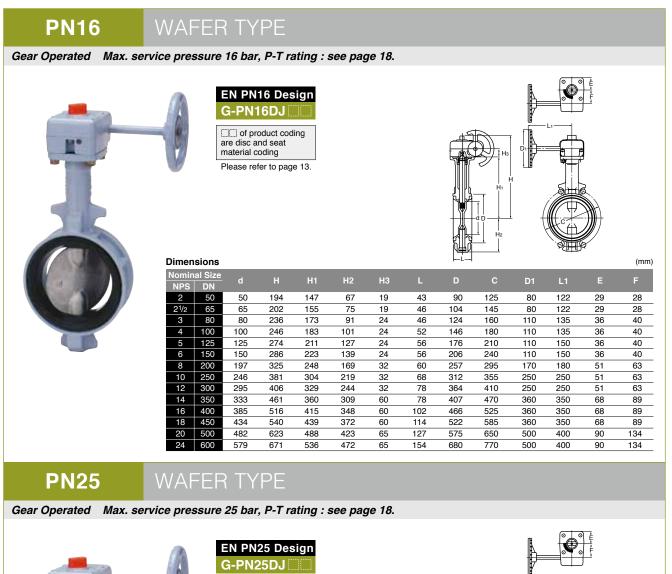
3 Valve material and design DJ.....Ductile iron DJ series

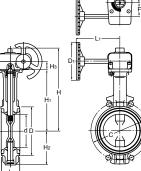

(4) Connection None....Wafer L.....Lugged

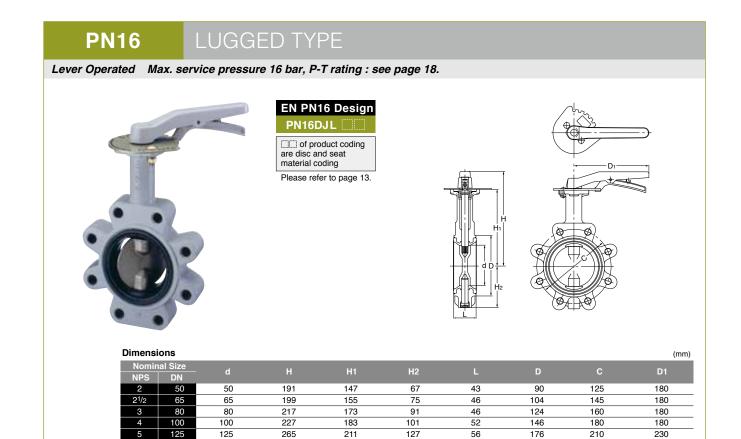

5 Disc material


None....Ductile iron (Ni-plated) 304 stainless steel U..... M...... 316 stainless steel A..... Aluminum bronze

6 Seat material


None....NBR (Buna-N) E.....EPDM

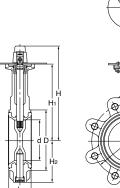



Dimensions (mm) Nominal Siz 2¹/2

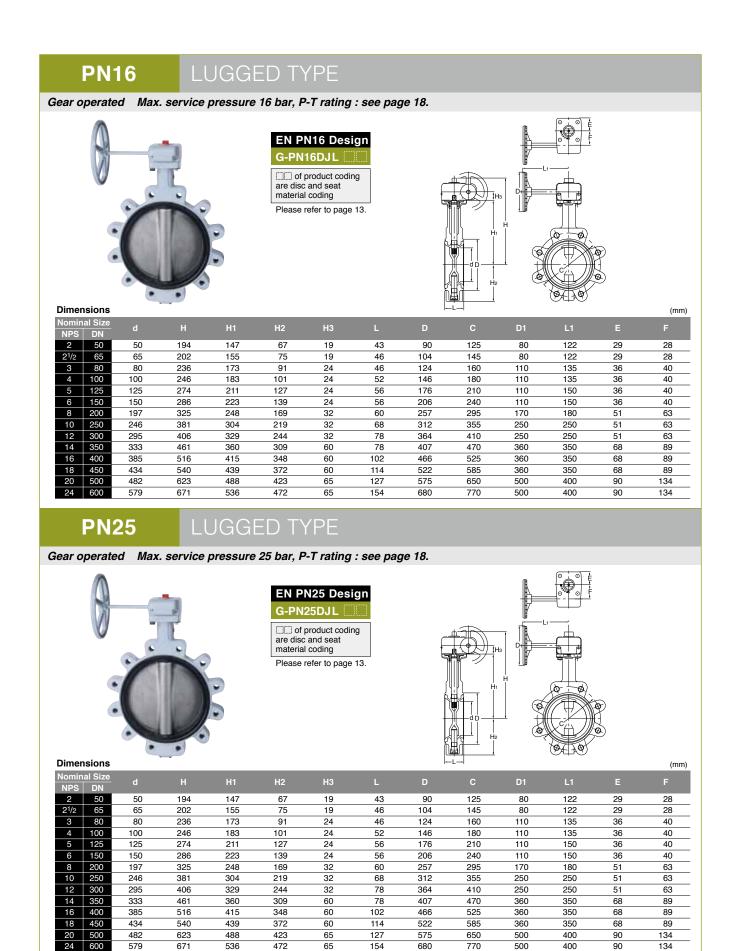
in the product coding are disc and seat material coding Please refer to page 13.

Dimen	sions							-L-I					(mm)
Nomin NPS	al Size DN	d	н	H1	H2	H3	L	D	С	D1	L1	E	F
2	50	50	194	147	67	19	43	90	125	80	122	29	28
21/2	65	65	202	155	75	19	46	104	145	80	122	29	28
3	80	80	236	173	91	24	46	124	160	110	135	36	40
4	100	100	246	183	101	24	52	146	180	110	135	36	40
5	125	125	274	211	127	24	56	176	210	110	150	36	40
6	150	150	286	223	139	24	56	206	240	110	150	36	40
8	200	197	325	248	169	32	60	257	295	170	180	51	63
10	250	246	381	304	219	32	68	312	355	250	250	51	63
12	300	295	406	329	244	32	78	364	410	250	250	51	63
14	350	333	461	360	309	60	78	407	470	360	350	68	89
16	400	385	516	415	348	60	102	466	525	360	350	68	89
18	450	434	540	439	372	60	114	522	585	360	350	68	89
20	500	482	623	488	423	65	127	575	650	500	400	90	134
24	600	579	671	536	472	65	154	680	770	500	400	90	134

PN25


LUGGED TYPE

Lever Operated Max. service pressure 25 bar, P-T rating : see page 18.



Please refer to page 13.

Dimensi	ons								(mm	
Nomin	al Size	ь	u	H1	H2		D	с	D1	
NPS	DN	u	н		112		U			
2	50	50	191	147	67	43	90	125	180	
21/2	65	65	199	155	75	46	104	145	180	
3	80	80	217	173	91	46	124	160	180	
4	100	100	227	183	101	52	146	180	180	
5	125	125	265	211	127	56	176	210	230	
6	150	150	277	223	139	56	206	240	230	
8	200	197	295	248	169	60	257	295	350	

KITZ XJ Series Aluminum Butterfly Valves

A long stainless steel neck blocks transfer of the fluid heat to a valve operating device, which thus needs no insulation. Dew condensation is minimized also in case of cold water service.

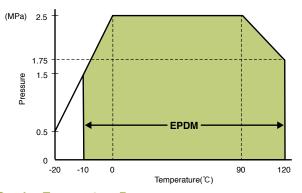
Materials

Parts	Material
Body	Aluminum Die-cast / Equivalent ASTM B85-03-383.0
Neck	304 Stainless Steel
Stem	Stainless Steel (Equivalent ASTM A276 Type 410 or 420)
Disc	A351 Gr. CF8M
O-ring	EPDM
Rubber seat	EPDM
Bottom stem	Stainless Steel (Equivalent ASTM A276 Type 410)
Bearing	Bronze

Long Neck Type

Prevented dew condensation

A long stainless steel neck reduces conductivity of the fluid heat for prevention of dew condensation.


- Availability of valve body and neck insulation.
- •Choice of actuators for automated valve operation.

Applications:

Building utilities.

Piping networks for cold water, hot water and other water supply.

P-T Rating for KITZ Butterfly valves (DJ/XJ)

Service Temperature Range

NBR (Buna-N) seat	0°C to +70°C
EPDM seat	-20°C to +120°C*
Continuous service temperature rang	-20°C to +100°C

*There are some fluid type restrictions for the service at 120°C. Contact KITZ for the details.

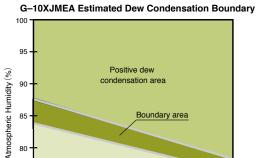
Dew Condensation Test

Samples of KITZ XJ Series butterfly valves equipped with long necks (KITZ Product Code : G-10XJMEA) were tested at KITZ laboratory under the conditions introduced below. Lower surface temperature of gear boxes, atomospheric temperatures and atmospheric humidities were measured as the variable functions. The dew condensations boudary was estimated as illustrated below.

Test condition :

80

75


70

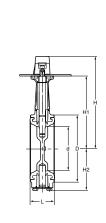
20

Line fluid : +5°C cold water Atmospheric temperature : +20°C to +40°C Valve insulation : 50mm glass wool (JIS A 9501) around the test valve with gear boxes exposed to the open air.

Note:

The estimation introduced here is a result of summary of the tests carried out within a test basin provided with constant temperature and humidity, and does not necessarily represent absolute values. Note that dew condensation preventative property of these valves may be affected by change of test environments such as extent of air transfer and variation of line fluid temperature, atmospheric humiditiy or condition of insulation. Thus, acceptance of allowance of $\pm 5\%$ over the boundary area is recommended.

Atmospheric Temperature (°C)


40

ONG NECK TYPE

Lever Operated Max. service pressure 16 bar, P-T rating : see page 18.

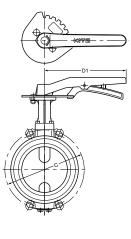
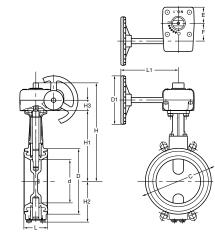


Fig. PN16XJME

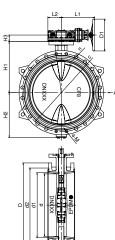
• 316SS Disc, EPDM Seat


Dimensions unit:mm Size D DN NPS $2\frac{1}{2}$

PN16

ONG NECK TYPE

Gear Operated Max. service pressure 16 bar, P-T rating : see page 18.



Dimensions unit:mm Gear type H3 D F DN No.0 $2\frac{1}{2}$ No.0 No.1 No.1 No.1 No.1 No.2

PN16 DOUBLE FLANGE TYPE

Gear Operated Max. service pressure 16 bar, P-T rating : see page 18.

Feature	
Fig.No.	G-PN16SFKBV13UE
Max.service pressure	1.6MPa
Service temperature	0~120°C
Flow direction	Bi-flow
Connection flange	"EN 1092-2 PN16 (DN700. 800. 900. 1000. 1200)
Connection hange	ASME B16.47 CLASS 150 Sr.A (DN650. 750)"
Design standard	BS EN593

Material

Parts	Material
Body	Ductile Iron
Bottom stem	420SS
Disc	CF8/CF8m:Option
O-ring	NBR
Seat rubber	EPDM
Gear unit	Cast Iron
Key	Carbon steel
Bearing	Copper Based Powder Metallurgy

Dimensions

Dimensi	ons						-									unit:mn
Nominal Size			44	H1	H2	НЗ		End Connection						D1	L1	L2
DN	NPS	· u	d1	п	-Π2	пэ	L	D	d2	С			M	וט	- L I	62
650	26	635	658	550	495	80	292	870	749	806.4	20-ф35	36.3	11/4-8UN	400	402	162
700	28	675	719	560	504	80	292	910	794	840	20-ф37	39.5	M33	400	402	162
750	30	725	769	618	510	80	318	985	857	914.4	24-ф35	44	11/4-8UN	400	402	162
800	32	770	819	620	545	80	318	1025	901	950	20-ф41	43	M36	400	402	162
900	36	875	890	685	620	100	330	1125	1001	1050	24-φ41	46.5	M36	400	448.5	195
1000	40	970	997	735	685	100	410	1255	1112	1170	24-ф44	50	M39	400	448.5	195
1200	48	1175	1200	917	800	101	470	1485	1328	1390	28-φ50	57	M45	450	496	230
*Regardin	ng large si	ze valve, ple	ase refer	to Page	13.											

20

Precautions for Trouble-free Operation of KITZ Butterfly Valves

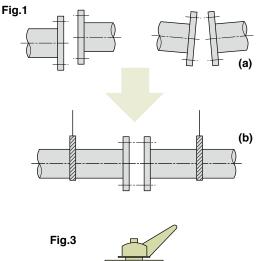
Valve Selection

- Ensure to select a valve with design specifications which meet the fluid type and the pressure and temperature conditions required.
- Lubricants are applied to discs, rubber seats and PTFE seats as standard to protect their surfaces.
 - Oil-free treated types are available as option. Contact KITZ Corporation or its local distributors for the details.
- Contact KITZ Corporation or its local distributors for service with pulverulent bodies.

Storage and Handling

Valves must be stored in dry, clean and corrosion-free environment with no direct exposure to the sun, leaving valves open by 10° for prevention of permanent distortion of resilient seats. Refrain from overloading valves and their actuators, such as storing them in piles or placing other objects on them.

Mounting on Pipelines


- Valves must be mounted on flanges only after flanges have been welded to pipes and cooled down to the atmospherical temperature. Otherwise, welding heat may affect the quality of resilient seats.
- Edges of welded flanges must be machined for smooth surface finish so that they may not damage resilient seats during valve mounting. Flange faces must be free from damage or deformation, and be cleaned to remove rust or any other foreign objects so that there will

be no concern of external leakage through valve and flange connections. Gaskets are not required for mounting KITZ DJ series butterfly valves.

- Clean flanges and pipe bores to thoroughly remove welding spatters, scales and other foreign objects which may have been left inside.
- Accurate centering of each couple of upstream and downstream pipes is essential for trouble-free operation of valves mounted between them. Incorrect centering shown in Fig. 1 must be by all means avoided.
- For valve mounting, set jack bolts under the pipes for flat support at the same height, and adjust the flange-to-flange distance so that some 6 mm to 10 mm room may be allowed beside the both sides of the valve body.

Remember that valves here must be left open only by 10° from the fully closed position.

- Set two bolts into the lower mounting guides of a valve and mount it carefully so that flange faces may not damage resilient seats. (Fig. 2)
- Then set another two bolts into the upper mounting guides of a valve, ensuring the correct centering between pipes and the valve.
- Trially open the valve to check to see if there is no disturbing contact between the valve disc and the flanges.
- Remove the jack bolts, set all bolts around the valve body and tighten them alternately and diagonally till the flanges contact the valve body (Fig. 3 and 4).

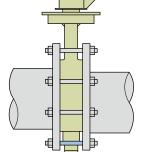
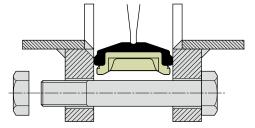
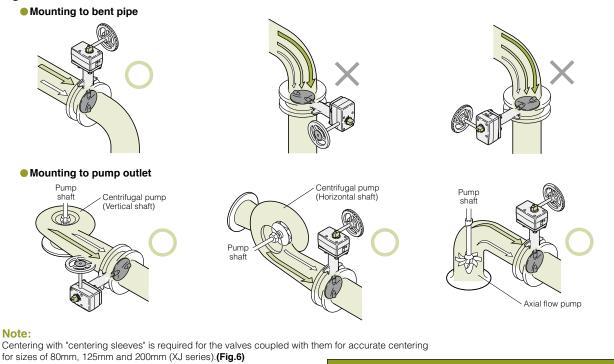



Fig.4

Fig.2

- For mounting actuated valves, provide valve supports to prevent bending of valve necks and reduce valve and pipe vibration.
- Don't step on valve necks or valve handwheels.
- Don't mount valves of DN350 and larger with their operations upside down.
- Don't mount butterfly valves directly to check valves or pumps, which may cause damage to them by the disc contacts.
- Don't mount valves to downstream sides of elbows, reducers or regulating valves where fluid velocity changes. It is recommended to install valves approximately 10 times of the valve nominal sizes away from them for such cases.
- Mount valves taking consideration of the effects which discs are given by fluid velocity or pressure chages in the pipings. Refer to the illustrations. (Fig.5)


Contact KITZ Corporation or its local distributors for the details.

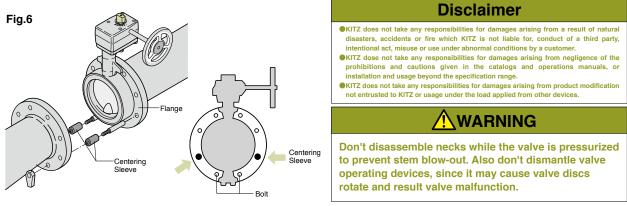

Valve Operation

Fig.5

- Valves equipped with manual operators such as levers, and handles of gears must be ONLY MANUALLY operated. Application of an excessive external force to operate valves may result in malfunction of valves and their operators.
- Ensure to fully open valves before a loop test of the piping system is carried out with line pressure higher than the nominal pressure of tested valves. Never use closed valves in place of blind flanges.

- When valves need to be dismantled from pipes for maintenance or any other cause, ensure to thoroughly relieve the line pressure beforehand. Loosening piping bolts under line pressure causes a danger. Any residual fluid left inside the pipeline must be completely drained.
- Users should contact KITZ Corporation or its local distributors for technical advice, when valves should be continuously pressurized while left open by 30° or less.
- Don't use position indicators to operate valves, or overload position indicators. This may cause damage to indicators.
- Ensure to use blind flanges when butterfly valves are mounted at the end of pipelines.
- Standard actuators are referenced in this catalog for actuated valve operation. Contact KITZ Corporation or its local distributors for mounting optional actuators.
- Contact KITZ Corporation for service at hopper or pump outlets.
- Avoid touching gear operators and actuator stopper bolts accidentally.
- It is recommended to perform periodical inspection for
 Making sure of valve opening degree
 - Making sure of valve opening degree
 Checking loosened bolts and leakage at each connection
 - Checking vibration and noise
- Refer to instruction manual for other precautions. Also refer to actuator catalogs and instruction manuals for actuated valves.

<u> C</u>AUTION

Pressure-temperature ratings and other performance date published in this catalog have been developed from our design calculation, in-house testing, field reports provided by our customers and/or published official standards or specifications. They are good only to cover typical applications as a general guideline to users of KITZ products introduced in this catalog.

For any specific application, users are kindly requested to contact KITZ Corporation for technical advice, or to carry out their own study and evaluation for proving suitability of these products to such an application. Failure to follow this request could result in property damage and/or personal injury, for which we shall not be liable.

While this catalog has been compiled with the utmost care, we assume no responsibility for errors, impropriety or inadequacy. Any information provided in this catalog is subject to from-time-to-time change without notice for error rectification, product discontinuation, design modification, new product introduction or any other cause that KITZ Corporation considers necessary. This edition cancels all previous issues.

Read instruction manual carefully before use.

If any products designated as strategic material in the Foreign Exchange and Foreign Trade Law, Cabinet Order Concerning Control of Export Trade, Cabinet order Concerning Control of Foreign Exchange and other related laws and ordinances ("Foreign Exchange Laws") are exported to any foreign country or countries, an export license issued by the Japanese Government will be required under the Foreign Exchange Laws.

Further, there may be cases where an export license issued by the government of the United States or other country will be required under the applicable export-related laws and ordinances in such relevant countries.

The contract shall become effective subject to that a relevant export license is obtained from the Japanese Government.

1-10-1, Nakase, Mihama-ku, Chiba 261-8577, Japan International Sales Dept. Phone : 81-43-299-1730 Fax : 81-43-299-0121 — Distributed by —